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Propagation of Airy–Gaussian vortex (AiGV) beams through the gradient-index medium is investigated analyti-
cally and numerically with the transfer matrix method. Deriving the analytic expression of the AiGV beams based
on the Huygens diffraction integral formula, we obtain the propagate path, intensity and phase distributions, and
the Poynting vector of the first- and second-order AiGV beams, which propagate through the paraxial ABCD
system. The ballistic trajectory is no longer conventional parabolic but trigonometric shapes in the gradient-index
medium. Especially, the AiGV beams represent the singular behavior at the propagation path and the light
intensity distribution. The phase distribution and the Poynting vector exhibit in reverse when the AiGV beams
through the singularity. As the order increases, the main lobe of the AiGV beams is gradually overlapped by the
vortex core. Further, the sidelobe weakens when the AiGV beams propagate nearly to the singularity.
Additionally, the figure of the Poynting vector of the AiGV beams proves the direction of energy flow correspond-
ing to the intensity distribution. The vortex of the second-order AiGV beams is larger, and the propagation
velocity is faster than that of the first order. © 2016 Optical Society of America

OCIS codes: (010.3310) Laser beam transmission; (050.4865) Optical vortices; (050.5080) Phase shift; (070.2580) Paraxial wave

optics; (070.2590) ABCD transforms; (310.3840) Materials and process characterization.
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1. INTRODUCTION

Nondiffracting is part of the optical wave packet that keeps its
own optical property in free-space transmission. The Airy
beam, which is a new kind of nondiffracting beam, can be gen-
erated by a Gaussian beam through the cubic phase modulation
and Fourier transform lens [1–3]. The property of the Airy
beam is self-healing in the propagation process and has the
characteristics of lateral acceleration, which is similar to ballistic
movement under action of gravity [4]. Baumgartl and cowork-
ers [5] used the Airy wave packet to clean the optical particle
in the local zone. It makes the Airy beam blow the particle to
the main sidelobe, driven by the energy flux. Because of its
unique properties, the Airy beam has attracted widespread
attention [3–8].

On the other hand, the Airy–Gaussian (AiG) beams, from
which the Airy beam carries finite energy, have nondiffracting
propagation properties within a finite distance. Nowadays, the
AiG beams have been studied based on its theoretical and ex-
perimental research. The AiG beams show a self-healing nature
and parabolic trajectory propagating on the free space and the
uniaxial crystal. What is more, based on the AiG beams, the

Airy–Gaussian vortex (AiGV) beams are multiplied by a vortex
factor. The vortex beam, which owns continuous spiral phase,
has phase singularity and intensity singularity [9]. Because of
the vortex factor, the main lobe or the sidelobe of the AiG
beams will be destroyed, depending on the direction of vortex.
Owing to the influence of vortex, the nondiffracting of the
AiGV beams can be shown after propagating at a distance. As
a new type of nondiffracting beam, the AiGV beams have to be
further researched propagating in the gradient-index medium
to perform some special properties. The gradient-index
medium has application value in photocommunication, tech-
niques of optical sensing, and fiber splicing. The lateral varia-
tion of the refractive index also makes the light beam generate
in a lens-like and waveguide effect, so that the propagation
effects of AiG beams are different from others [10]. There
has been research on the fully spatially coherent light and
the partially coherent polychromatic light propagating in the
gradient-index medium [10–12].

Based on the generalized Huygens–Fresnel integral formula,
the passage derived analytical propagation expressions in
regards to the AiGV beams, which propagate in the paraxial
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ABCD system. Using numerical simulations, we discover that
the ballistic trajectory and the track of the vortex of the first-
and second-order AiGV beams exist singularity through the
gradient-index medium. We also study the intensity and phase
distribution of the AiGV beams in the gradient-index medium.
Further, we investigate the influence of different Z 0 values on
the propagation of the first- and second-order AiGV beams
through the gradient-index medium. Besides, we analyze that
the effect of the vortex to the Poynting vector of the first- and
second-order AiGV beams.

2. ANALYTICAL EXPRESSION OF THE FIRST-
AND SECOND-ORDER AIGV BEAMS THROUGH
THE GRADIENT-INDEX MEDIA

In the initial plane, the field distribution of the AiGV beams
superimposed by an order can be expressed as [1,13]
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where E0�x0; y0; 0� represents the initial electric field distribu-
tion at the input plane, A0 denotes the constant amplitude, and
Ai�·� is the Airy function [14], w0 is the arbitrary transverse
scales and 0 ≤ a1 < 1, 0 ≤ a2 < 1 in the exponential function
is a parameter associated with the truncation of the AiGV
beams, w1 and w2 are arbitrary transverse scales in x and y
directions, respectively, among of which, w1 can be expressed
as w1 � χ0w0 and w2 � χ0w0, where χ0 is the parameter con-
trolling the beam that will tend to the Gaussian vortex beam
with a larger value and the Airy vortex beam with a smaller
value, xd and yd are the dislocation of the optical vortex from
the x and y axes, respectively. We will deduce the analytic ex-
pression of the AiGV beams with xd � yd � 0 in this section.

The AiGV beams with l � 1 can be referred to the first-
order AiGV beams and l � 2 to the second-order AiGV beams.
In the situation of l � 1 and l � 2, we calculate the initial
incident of the AiGV beam intensity and phase with xd �
yd � 0 and xd � yd ≠ 0, respectively. And xd � yd � 0
means the vortex overlaps the main lobe of the AiGV beams;
xd � yd ≠ 0 means the vortex do not overlap the main lobe of
the AiGV beams.

Clearly, we find that, in Fig. 1 as the l increases, the vortex
further weakens the main lobe of the AiGV beams and further
strengthens the sidelobe of the AiGV beams in the same con-
ditions. Because the l increases, we can see the cycle of the
AiGV beams in phase with l � 2 is the half of l � 1.
Thus, the cycle of the AiGV beams will be decreased following
the l increase. On the other hand, contrasting the case of xd �
yd � 0 with xd � yd ≠ 0, we easily get the fact that the main
lobe of AiGV beams is strengthened, and the sidelobe of the
AiGV beams is weakened, as the xd and yd increase. Because
the vortex direction is changed, it no longer overlaps the main
lobe. Besides, as shown in the figure of the phase distribution of
the AiGV beams with xd � yd ≠ 0, the direction of the vortex
of the AiGV beams is changed as the xd and yd increase. And

the vortex of the AiGV beams moves to the upper right because
of the xd � yd � 0.5 mm.

Next, we consider the case of the formula derivation to
discover the propagation properties of the AiGV beams. The
paraxial transmission of the AiGV beams, which is shown
by E0�x0; y0; 0� through the gradient-index media, can be per-
formed with the Huygens diffraction integral [15]. It can be
expressed as
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where the wavenumber is k � 2π
λ in free space and λ is the

wavelength of the incident light.
Based on binomial expansion and Airy integral formula, we

can denote the general form that applies to any arbitrary order
of the AiGV beams. It can be formulated as
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with b � 1
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− ikA
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� ikx
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� iky

B .
In the condition of l � 1 in Eq. (3), we obtain the analytical

complex field distribution of the AiGV beams when it prop-
agates at the distance to the z axis, which can be formulated as

E3�x; y; z� �
iA0k
2BG

exp�H �x; y; z���F 3 � F 4 � F 5�; (6)

where
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and Ai 0�·� denting the derivative of

the Airy function.
Additionally, in order to further study the AiGV beams, we

denote l � 2 in Eq. (3), which can be formulated as
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Based on the refractive-index distribution of the gradient
form, the gradient-index media includes the radial distribution,
the axial distribution, and the spherical distribution [12]. And
the radial distribution has been widely applied. The refractive
index of the gradient radial distribution can be expressed as

n � n0

�
1 −

r2

2β2

�
; (15)

n0 is the refractive index in media axis, r can be expressed as
r2 � x2 � y2, and β is the factor of gradient refractive index.
We express the optical transfer matrix transfer from z � 0 to
arbitrary z plane region as [11,16]�

A B
C D

�
�
 

cos�zβ� β sin�zβ�
−
sin�zβ�

β cos�zβ�

!
; (16)

where β represents the coefficient of the gradient refractive
index. Finally, we substitute Eq. (16) ABCD matrices into
Eqs. (6–10) to obtain the analytic expression of the first-order
AiGV beams, which propagates through the gradient-index
medium. The ballistic trajectory of the first AiGV beams also
consists of the movement locus of the AiG beams and the
vortex. The ballistic trajectory of the Airy beam in the x–z
plane and the y–z plane can be expressed as

s �
2aβ2 sin2�zβ�

k2w2
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From Eq. (17), we can find that the transmission distance
of the ballistic trajectory shows the periodic variation with
L � 2πβ. And when

z � �2j�1�L
4 ; �j � 0; 1; 2;…� ; (18)

the element of matrix cos�zβ� � 0; thus, the solution of the spe-
cial plane from Eq. (17) is uncertain. The numerical calculation
and some results about the property of the AiGV beams and the
gradient-index medium will be shown in the next section.

3. NUMERICAL ANALYSIS AND DISCUSSION
FOR AIRY–GAUSSIAN VORTEX BEAMS

To explore the propagation properties of the AiGV beams
through the gradient-index medium, we perform the light in-
tensity distribution of different positions and showed the bal-
listic trajectory and the phase distribution when the AiGV
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beams are the first- and second-order AiGV beams, respectively.
From what has been previously discussed, Eq. (3) is the general
analytical expression of the field distribution of the AiGV
beams passing through the gradient-index medium. We define
that A0 � 1, λ � 623.8 nm, a � 0.1, A0 � 1, χ0 � 0.05,
and w1 � w2 � 0.1 mm, and the Rayleigh distance is
ZR � kw2

1∕2 � 4.9646 cm.
First, we give the propagation process of the first-order

AiGV beams in the gradient-index medium in Fig. 2.

Figure 2(a) indicates the ballistic trajectory of the first-order
AiGV beams. The bright lines are the track of the first-order
AiGV beams. We can see that the propagation path, which has
three singularities, is a wavy line performing for a trigonometric
function. As the picture shows, in the singularities, the ballistic
trajectory is divergent and has spectral anomalies. For example,
the ballistic trajectory of the left singularity approaches infinity
and appears on the right side approaching negative infinity. The
singularities are at the positions of z � L

4 , z � 3L
4 , and z � 5L

4 ,
which are corresponding to Eq. (18) with j � 0, j � 1, and
j � 2, respectively. Furthermore, the divergent of the track
in the singularities is different from the parabola ballistic
trajectory in the free space and the uniaxial crystal.

In Fig. 2(b), when it propagates through the direction of the
maximum intensity, which is the middle between two singu-
larities with z � L

2 , the light intensity distribution is symmet-
ric. It can be clearly seen that the beams take the displacement
along the 45° axis resulting from its distinctive symmetry. The
sidelobe of the light intensity distribution is weakened when
closing in on the singularity. As the beams further propagates
before the first singularity, the main lobe is reconstructed, and
the sidelobe gradually disappears.

At the beginning of the second singularity, the light intensity
distribution is a symmetric distribution because of the singu-
larity, and the sidelobe is reconstructed gradually when the
beams are close to maximum intensity. These phenomena
prove the acceleration and self-healing nature of the first-order
AiGV beams.

In addition, Figs. 2(c1)–2(c12) show the corresponding
phase distributions. We can see the rotation direction of the
vortex changes after the first order AiGV beams propagate
through the direction of singularity and the maximum inten-
sity. Besides, the properties of gradient-index medium make the
light intensity distribution and the direction of the vortex
change oppositely.

To delve into the propagation properties of the second-order
AiGV beams, we carry out some numerical calculations and
present the phenomenon according to Eqs. (11) and (12).

Fig. 1. In the case of xd � 0 and yd � 0, (a1) and (a2) are the in-
tensity of the initial incident AiGV beams with l � 1 and l � 2, re-
spectively; (b1) and (b2) are the phase distribution of the initial
incident AiGV beams with l � 1 and l � 2. In the case of xd �
0.5 mm and yd � 0.5 mm, (a3) and (a4) are the intensity of the initial
incident AiGV beams with l � 1 and l � 2, respectively; (b3) and
(b4) are the phase distribution of the initial incident AiGV beams with
l � 1 and l � 2.

Fig. 2. Numerical demonstration of the first-order AiGV beams
propagate through the gradient-index medium. (a) Ballistic trajectory
of the first-order AiGV beams in the gradient-index media. (b1)–(b12)
Light intensity distributions of the first-order AiGV beams at the dif-
ferent distance in (a). (c1)–(c12) Corresponding phase distributions of
the first-order AiGV beams at the different distance in (a). Cut lines
indicate the 2D cross section of the light intensity distributions of the
first order AiGV beams in the gradient-index media.
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Similar with the first-order AiGV beams, the ballistic trajec-
tory of the second-order AiGV beams are shown as the trigo-
nometric function distribution. However, because of the
second order, the influence of vortex factor is stronger than that
of the first-order vortex factor. Owing to the influence of the
vortex, the bright line is not clear.

As shown in Figs. 3(b1)–3(b12), the main lobe of the AiGV
beams is blocked completely by the vortex and disappears
because of the vortex factor.

In addition, Figs. 3(c1)–3(c12) present the phase of the
second-order AiGV beams, and it is the half of the phase of
the first-order AiGV beams, which is the same as the phase
distribution of the initial incident the AiGV beams, as shown
in Fig. 2.

Next, in order to investigate the influence of the parameter
χ0 on the ballistic trajectory of the AiGV beams with the first
and second orders, we make a numerical simulation to show the
influence of the parameter χ0 and the different between the
first- and second-order AiGV beams.

Compared with the first-order AiGV beams in Fig. 4, Fig. 5
indicates that the curve of the fluctuation of the second-order
AiGV beams is stronger than the first-order AiGV beams, and
the space of the singularity is bigger. Because the amplitude and
the vortex factor of the second-order AiGV beams are stronger
than that of the first-order. As χ0 increases, the light intensity
distribution of the AiGV beams gradually changes into
Gaussian type from Airy type. It can show that the light inten-
sity region is bigger with χ0 increasing.

In addition, owing to blocking out by the vortex, the propa-
gation trace also is clearer than that with a smaller χ0 at the
same propagation distance and the main lobe disappears.

Last, we explore the beam center of the first- and second-
order AiGV beams to observe the ballistic trajectories of the
first- and second-order AiGV beams from different angles.

Figure 6 clearly shows the position of the centroid of the
AiGV beams on propagation through the gradient-index
medium.When the parameter χ0 is 0.05, the AiGV beams tend

to be Airy vortex beams. When χ0 is 0.5, the AiGV beams tend
to be Gaussian vortex beams.

Besides, we can find that there are three singularities, which
are similar to three breakpoints in the propagation path of the

Fig. 3. Numerical demonstration of the second-order AiGV beams
propagation through the gradient-index medium. (a) Ballistic trajec-
tory of the second-order AiGV beams in the gradient-index media.
(b1)–(b12) Light intensity distributions of the second-order AiGV
beams at the different distance in (a). (c1)–(c12) Corresponding phase
distributions of the second-order AiGV beams at the different distance
in (a). Cut lines indicate the 2D cross section of the light intensity
distributions of the second-order AiGV beams in the gradient-index
media.

Fig. 4. Numerical demonstrations of ballistic trajectories
of the first-order AiGV beams in the gradient-index media. (a)–
(c) Numerically simulated the side-view propagation of the first-order
AiGV beams with (a) χ0 � 0.05, (b) χ0 � 0.1, (c) χ0 � 0.3.

Fig. 5. Numerical demonstrations of the ballistic trajectories of the
second-order AiGV beams in the gradient-index media. (a)–
(c) Numerically simulated the side-view propagation of the first order
AiGV beams with (a) χ0 � 0.05, (b) χ0 � 0.1, (c) χ0 � 0.3.

Fig. 6. Numerical demonstrations of the beam center of (a) first-
order AiGV beams and (b) second-order AiGV beams propagation
through the gradient-index medium.
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AiGV beam. When the first- and second-order AiGV beams
have the same χ0, the curve of the fluctuation of the second-
order AiGV beams is stronger than that of the first-order
AiGV beams.

4. POYNTING VECTOR OF AIRY–GAUSSIAN
VORTEX BEAMS

The Poynting’s theorem is the physical quantity described by
the energy flow properties of each point in the electromagnetic
field. The propagation properties of electromagnetic fields
are closely related to their local energy flow. And the Poynting
vector is defined as S⃗ � c

4π E⃗ × B⃗ [17], c denotes the speed of

light in vacuum, and E⃗ and B⃗ are the electric and magnetic
fields, respectively. Besides, we can give a vector potential
A⃗ � ζ̂E1�x; y; z� exp�−ikz�, where ζ̂ is an arbitrary polariza-
tion. In the Lorenz gauge, assuming an x̂-polarized field, the
time-averaged Poynting vector can be expressed as [18]

hS⃗i � c
4π

hE⃗ × B⃗i

� c
8π

�iω�E1∇⊥E�
1 − E

�
1∇⊥E1� � 2ωkjE1j2êz�; (19)

where ∇⊥ � ∂
∂x e⃗x � ∂

∂y e⃗y, e⃗x , e⃗y, and e⃗z are the unit vectors
along the x, y, and z directions, respectively, and * denotes
the complex conjugate.

In Fig. 7, the coordinate axis, which is on the left bottom,
the positive axis; the top right corner is the negative half-axis.
Clearly, we can find that the distribution of the energy flow in
the z direction is proportional to the light intensity distribu-
tion. For observing the changes of the energy flux density of
both the first- and second-order AiGV beams, we will perform
numerical simulations of the Poynting vector with different
propagation distance, which corresponds to Fig. 2 and Fig. 3,
respectively.

Figures 7(a1)–7(a12) show the Poynting vector of the first-
order AiGV beams with the different propagation distance. It is
easy to find that there is a vortex near the origin because of
the paraxial approximation. When propagating through the

direction of the maximum intensity, which is the midpoint
between two singularities, the vortex is clear, such as in
Figs. 7(a1), 7(a4), 7(a8), and 7(a12). The vortex also is weak-
ened gradually as closing the singularity. Besides, the distribu-
tion of the vortex is the same as the light intensity distribution,
which turns 180° and is inversion symmetry.

On the other hand, Figs. 7(b1)–7(b12) indicate that
the Poynting vector of the second-order AiGV beams with the
different propagation distance. What is different about the
Poynting vector between the first- and second-order AiGV
beams is the direction of the vortex because the propagation
velocity of the second-order AiGV beams is faster than the first
order. This is why the direction of the second-order vortex is far
from origin than that of the first order.

5. CONCLUSIONS

In conclusion, we have obtained the analytic expression of the
AiGV beams, which propagate through the gradient-index
medium. Furthermore, we investigated the propagate path, in-
tensity distributions, phase distributions, and the Poynting vec-
tor of the first- and the second-order AiGV beams. Simulation
results demonstrate that the AiGV beams have the singularities
of the ballistic trajectory divergence propagating in the gra-
dient-index medium at the position of z � �2j�1�L

4 . Because
the accelerated speed tends to infinity and the negative infinity
at the specified distance. The gradient-index medium possesses
a lens-like effect, which leads to the lobe becoming the negative
infinity and no longer meeting the paraxial approximation.
This phenomena are different from the parabolic trajectory
propagating through free space and the uniaxial crystal.
Besides, near the singularity, it is easy to find that the light in-
tensity, the phase distribution, and the Poynting vector are re-
verse because of the property of the gradient-index medium. In
critical distance, the main lobe is shaded by the vortex. As the
order increases, we can see clearly that the vortex affects the in-
tensity distribution, the phase distribution, the propagation path,
and the Poynting vector of the AiGV beams more from the
figure shown above. The cycle of the AiGV beams will be de-
creased following the l increase. The main lobe is weakened,
and the sidelobe is strengthened when the order increases because
of the influence of the vortex factor. Besides, the sidelobe and
vortex disappear gradually when the AiGV beams propagate clos-
ing to the singularity. Additionally, compared with the first-order
AiGV beams, the vortex of the second-order AiGV beams is larger
and the propagation velocity is faster. Thus, the propagation veloc-
ity is raised as the order increases. It has a big influence in the
propagation path, the light intensity, the phase distribution,
and the Poynting vector of the second-order AiGV beams.
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Fig. 7. Numerical demonstrations of the AiGV beams propagating
through the gradient-index medium. (a1)–(a12) Poynting vector of
the first-order AiGV beams in the same positions as in Fig. 2 with
χ0 � 0.1. (b1)–(b12) Poynting vector of the second-order AiGV
beams in the same positions as in Fig. 3 with χ0 � 0.1.
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