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The propagation of right-hand circularly polarized Airy–Gaussian beams (RHCPAiGBs) through slabs of right-
handed materials (RHMs) and left-handed materials (LHMs) is investigated analytically and numerically with the
transfer matrix method. An approximate analytical expression for the RHCPAiGBs passing through a paraxial
ABCD optical system is derived on the basis of the Huygens diffraction integral formula. The intensity and the
phase distributions of the RHCPAiGBs through RHMs and LHMs are demonstrated. The influence of the param-
eter χ 0 on the propagation of RHCPAiGBs through RHM and LHM slabs is investigated. The RHCPAiGBs
possess transverse-momentum currents, which shows that the physics underlying this intriguing accelerating ef-
fect is that of the combined contributions of the transverse spin and transverse orbital currents. Additionally, we
go a step further to explore the radiation force including the gradient force and scattering force of the
RHCPAiGBs. © 2015 Optical Society of America
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1. INTRODUCTION

In 1979, Berry and Balazs predicted that the fundamental Airy
wave packet would be a solution of the Schrödinger equation in
the context of quantum mechanics [1]. As one kind of nondif-
fracting beam, it is not only nondiffracting within a diffraction-
free zone [2] and self-healing after passing through obstacles [3],
but it also undergoes self-bending during propagation [2,4],
which distinguishes the Airy beam from another nondiffracting
beam such as the Bessel beam. As well, the Airy beam has been
studied extensively due to its unique properties, especially its self-
acceleration. However, infinite energy is carried in the Airy beam
theoretically, signifying that the Airy beamwith infinite energy is
nonexistent in reality. In 2007, the finite energy Airy beam was
first studied and was experimentally demonstrated in optics by
Siviloglou andChristodoulides [4]. Airy–Gaussian (AiG) beams,
a generalized form of the Airy beams, carry finite energy and
maintain their approximate nondiffracting propagation proper-
ties within a finite distance of propagation [5]. The AiG beam
propagates with a pattern between the Airy beam and the

Gaussian beam, which is influenced by a parameter. AiG beams
can be realized experimentally to a very good approximation [5].

Based on the current theoretical and experimental research,
there are three properties during the propagation of the AiG
beam: approximately nondiffracting, self-healing, and self-ac-
celerating. Approximately nondiffracting means that it almost
retains the shape of the intensity distributions during propaga-
tion. Self-healing means that the beam can be partially ob-
structed at one point, but will reform at a point further
down the beam main lobe. Self-accelerating means the beam
propagates along parabolic trajectories resulting from asymmet-
ric transverse intensity patterns, similar to the ballistic trajectory
under the effect of gravity.

Bandres and Gutiérrez-Vega [5] introduced the generalized
AiG beam and analyzed propagation through optical systems
described by ABCD matrices with complex elements. Deng
and Li [6] have studied the propagation of the AiG beam in
a strongly nonlocal medium analytically and numerically.
Chen et al. [7] have shown the propagation of the AiG beam
in a Kerr medium.
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On the other hand, in 1968, Veselago first introduced the
concept of left-handed materials (LHMs) with simultaneously
negative permittivity and negative permeability [8]. However,
due to the fact that such a LHM does not exist naturally,
Veselago’s research was not properly regarded over the last three
decades. In the late 1990s, Pendry et al. put forward a model of
a periodic array of metallic wires to obtain an effective negative
permittivity [9,10], and an array of split-ring resonators to get
an effective negative permeability [11]. The first artificial LHM
was fabricated by Smith et al. [12].

Luo et al. [13] have studied the reversed propagation dy-
namics of Laguerre–Gaussian beams in left-handed materials.
The propagation property of an �1� 1�D Airy beam from
right-handed material (RHM) to LHM has been investigated,
and some useful numerical results were demonstrated by
Lin and Pu [14]. Chen et al. [15] have investigated the
�2� 1�D Airy–Gaussian vortex (AiGV) beams propagating
through slabs of RHMs and LHMs. Here, we investigate
the �2� 1�D right-hand circularly polarized Airy–Gaussian
beams (RHCPAiGBs) propagating through slabs of RHMs
and LHMs.

2. ANALYTICAL EXPRESSION OF THE
RHCPAIGBS THROUGH AN OPTICAL ABCD
SYSTEM

The initial plane is on the left side of the RHMs, and the
z-axis is the propagation direction in the Cartesian coordinate
system. Figure 1 shows that the LHMs slab in region 2 is sur-
rounded by the common RHMs in region 1 and region 3. The
beam propagates a distance of Z 1 in region 1, Z 2 in region 2,
and Z 3 in region 3. When the RHCPAiGBs pass through
the slab of LHMs, they will pass the interfaces z � Z 1 and
z � Z 1 � Z 2 before they reach the plane z � Z 1 � Z 2 �
Z 3 in the RHMs.

The optical field distribution of the RHCPAiGB at the
initial plane in the Cartesian coordinate system can be written
in the form [4,6]

E⃗�x0; y0; 0� � A0Ai
�
x0
w1

�
Ai
�
y0
w2

�
exp

�
ax0
w1

� ay0
w2

�

× exp
�
−
x20 � y20
w2
0

�
�e⃗x − ie⃗y�; (1)

where A0 is the constant amplitude of the complex amplitude;
0 ≤ a < 1 is the exponential truncation factor; w0 is the beam

waist size; w1 and w2, respectively, denote the arbitrary trans-
verse scales in the x and y directions; Ai�·� is the Airy function
[16]; and e⃗x and e⃗y denote the unit vectors along the x and y
directions. We assume w1 � w2 � χ0w0, where χ0 is the
parameter controlling the beam to tend to a right-hand circu-
larly polarized (RHCP) Airy beam with a smaller value, or
a RHCP Gaussian beam with larger one. Figure 2 shows
the intensity distribution of the RHCPAiGB at the input
plane with parameters A0 � 1, w1 � w2 � 0.1 mm, and
a � 0.1. We can find the asymmetric transverse intensity of
the RHCPAiGB, which results in the beam self-bending along
the 45° axis.

Now we discuss the propagation of the RHCPAiGBs
through the slabs of RHMs and LHMs [17] under the paraxial
approximation, and the ABCD matrix of the optical system can
be written as [15]
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The paraxial propagation of the RHCPAiGBs through the
optical ABCD system satisfies the Huygens diffraction
integral [18],

E⃗�x; y; z� � ik
2πB

ZZ
∞

−∞
E⃗�x0; y0; 0� exp

�
−
ik
2B

�A�x20 � y20�

−2�x0x � y0y� � D�x2 � y2��
�
dx0dy0; (3)

where k � 2π∕λ is the wavenumber in free space; λ is the wave-
length of the incident light; A, B, and D are elements of the
transfer matrix. Substituting Eq. (1) into Eq. (3), we obtain the
ultimate output field distribution as

E⃗�x; y; z� � iA0k
2BM

exp�Q�x; y; z��Ai�f �x��Ai�g�y���e⃗x − ie⃗y�;
(4)

Fig. 1. Schematic diagram of the propagation system. The LHMs
slab in region 2 is placed in between the RHMs in region 1 and
region 3.

Fig. 2. (a) and (b) Intensity and phase distribution of the
initial incident 2D RHCPAiGB at the input plane z � 0,
respectively.
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where
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with M � 1
w2
0
� ikA

2B . In the next section, we can analyze the
propagation of RHCPAiGBs through the paraxial optical
system by employing Eq. (4) and the ABCD matrices
with Eq. (2).

3. NUMERICAL RESULTS

To delve into the propagation properties of RHCPAiGBs
through slabs of RHMs and LHMs, we carry out some numeri-
cal calculations and present the interesting findings. As dis-
cussed above, Eq. (4) is the general analytical expression
of the field distribution of the RHCPAiGBs propagating
through the optical ABCD system. We suppose that A0 � 1,
a � 0.1, nr � 1, nl � −1, λ � 632.8 nm, χ0 � 0.05, and
w1 � w2 � 0.1 mm. The Rayleigh distance of the beam
is ZR � kw2

1∕2 � 4.9646 cm.
We suppose that there is no reflection at the interfaces

z � Z 1 and z � Z 1 � Z 2.
Figures 3(a1)–3(a8) indicate the normalized intensity of the

1D RHCPAiGBs taken at different propagation distances
marked by the dashed lines in Fig. 3(d). According to these
figures, the translation of both the main lobe and minor lobes
of the 1D RHCPAiGBs toward the positive x-axis occurred
when propagating from z � 0 to z � 12ZR and from z �
24ZR to z � 36ZR , and translation toward the negative x-axis
occurred when propagating from z � 12ZR to z � 24ZR and
from z � 36ZR to z � 48ZR. Figures 3(b1)–3(b8) describe
the corresponding transverse normalized intensity patterns.
It can be clearly seen that the beam takes displacement along
the 45° axis resulting from its distinctive symmetry (since
w1 � w2). Figures 3(c1)–3(c8) depict the corresponding
phase distribution. Considering that the acceleration of the
RHCPAiGBs occurs along the 45° axis, we gain a numerically
simulated side view of the RHCPAiGBs’ propagation in the
plane y � x, demonstrated in Fig. 3(d).

It is clearly seen that the RHCPAiGB experiences self-
bending and goes along a parabolic trajectory when it passes
through the slab of RHMs in region 1. When passing through
the interface at z � Z 1, the beam undergoes refraction be-
tween the RHMs and LHMs. The refracted beam and the in-
cident beam, however, are on one side of the interface normal.

In fact, the beam obeys Snell’s law at the interface because the
refracted light inside the LHMs will make a negative angle with
the interface normal. Afterward, the beam goes along a sym-
metric parabolic trajectory in LHMs. After the beam passes
through the interface at z � Z 1 � Z 2, we can find that it ex-
periences an inverse parabolic bending in region 3, namely, the
LHMs slab acting as a perfect lens for the RHCPAiGB [19].

Interestingly, when comparing the Airy Gaussian vortex
(AIGV) beam and RHCPAiGB beam, we can find that they
transmit at the same trajectory when propagating through slabs
of RHMs and LHMs. In spite of this, they have some different
transmission characteristics. For instance, the maximum energy
of the AIGV beam in the process of transmission symmetrically
distributes far away from the center of the slabs while the maxi-
mum energy of the RHCPAiGBs distributes at the center.
In addition, from the phase diagram, obviously, the AIGV
beam possesses the vortex characteristic, but the RHCPAiGB
does not [15].

Next, we make a comparison of the beam propagating
different distances through slabs of RHMs and LHMs.
As shown in Fig. 4, the RHCPAiGB is reconstructed after
it passes through the slab of LHMs in region 2, and ex-
periences an inverse process in region 3. At the distance
z � Z 1 � Z 2 � Z 3, both the transverse intensity distribution
and the phase of the RHCPAiGBs return to the original state
(z � 0). Therefore, what can be expected is that the beam will
maintain its intensity at a particular level to keep propagating
like a zigzag wave regardless of passing through the arbitrary
distances of alternating slabs of RHMs and LHMs, and that
its intensity periodically repeats in every slab.

For observing the changes of intensity of the RHCPAiGBs
with different χ0, the peak intensity of the RHCPAiGBs is
shown in Fig. 5. As χ0 is increased, the peak intensity along
the beam propagation changes more rapidly. In addition, the
peak intensity of the RHCPAiGBs with larger χ0 is more weak-
ened than that with a smaller one at the same propagation
distance.

Fig. 3. Numerical demonstrations of the RHCPAiGBs propagating
through slabs of RHMs and LHMs: (a1)—(a8) the intensity distribu-
tions of the 1D RHCPAiGBs at the positions z � 2ZR , 8ZR , 16ZR ,
22ZR , 26ZR , 32ZR , 40ZR , and 46ZR , marked by the dashed lines in
(d); (b1)–(b8) the corresponding intensity distributions of the 2D
RHCPAiGBs in (a); (c1)–(c8) the corresponding phase distributions
at different positions; (d) numerically simulated side-view propagation
of the RHCPAiGBs. The solid lines indicate the interfaces.
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The time-averaged linear momentum density currents can
be taken as the combined contributions of the spin and the
orbital parts [20,21],

P⃗�r⃗� � P⃗s�r⃗� � P⃗o�r⃗�; (8)

where the orbital term is identified by the macroscopic energy
current concerning an arbitrary reference point and is indepen-
dent of the polarization. The spin term gets involved in the
phase between orthogonal field components and is completely
determined by the state of polarization [22]. In a monochro-
matic optical beam, the spin and orbital currents can be, respec-
tively, expressed as [20,21]

P⃗s�r⃗� � Im��E⃗ · ∇�E⃗��; (9)

P⃗o�r⃗� � Im�E⃗� · �∇�E⃗ �; (10)

where ∇ � ∂
∂x e⃗x � ∂

∂y e⃗y � ∂
∂z e⃗z is the nabla symbol, e⃗z denotes

the unit vector along the z direction, and � denotes the com-
plex conjugate.

We perform numerical simulations of the spin current and
the orbital current of the RHCPAiGBs with χ0 � 0.05, 0.3, 1,
respectively. Figures 6 and 7 show that the smaller χ0 is, the
stronger the aggregation of the spin current and the orbital cur-
rent of the RHCPAiGBs is. As we know, the spin current and
the orbital current are the global reaction of accelerating char-
acteristics for the RHCPAiGBs. In other words, χ0 with a small
value is conducive to the self-accelerating of the RHCPAiGBs,
nevertheless, the property of focused energy is lost. In addition,
we find a funny phenomenon that whatever the parameter
χ0 holds, the variation trend of the spin current and the orbital
current is almost identical.

Last, we explore the radiation forces of the RHCPAiGBs.
The gradient force and the scattering force are deemed to be
two kinds of radiation force. The gradient force is caused by
the inhomogeneous distribution of the energy density and
has the same direction as that of the optical intensity gradient.
We assume that a microparticle with refractive index n1 is
struck by the beam. By employing the vector identity and
the solution of the Maxwell equations, the gradient force
can be written as [23]

F⃗ grad�x; y; z; t� � �p⃗�x; y; z; t� · ∇�E⃗�x; y; z; t�; (11)

where p⃗�x; y; z; t� � 4πn22ε0r
3
0

�
m2−1
m2�2

�
E⃗�x; y; z; t� is the electric

dipole moment of the particle [24,25], m � n1
n2

is the relative
refractive index of the particle, n2 is the refractive index of
the surrounding medium, r0 is the radius of the microparticle,
and ε0 is the permittivity of vacuum. When the particle is in
steady state, its gradient force is the time average [23],

Fig. 4. Numerical demonstrations of the RHCPAiGBs propagating
through RHM and LHM slabs: (a)–(c) Numerically simulated side-
view propagation of the RHCPAiGBs with different distance slabs
Z 1 � 12, Z 2 � 24, Z 3 � 18, respectively, with χ0 � 0.05 in (a),
χ0 � 0.1 in (b), and χ0 � 0.3 in (c).

Fig. 5. Peak intensity distributions of the RHCPAiGBs with
different χ0.

Fig. 6. Numerical demonstrations of the RHCPAiGBs propagating
through slabs of RHMs and LHMs: (a1)–(a8) show the spin current of
the RHCPAiGBs at the positions marked by the dashed lines in
Fig. 3(d) with χ0 � 0.05; all are the same as those in (a1)–(a8) except
χ0 � 0.3 in (b1)–(b8) and χ0 � 1 in (c1)–(c8).

Fig. 7. Numerical demonstrations of the RHCPAiGBs propagating
through slabs of RHMs and LHMs: (a1)–(a8) show the orbital current
of the RHCPAiGBs at the positions marked by the dashed lines in
Fig. 3(d) with χ0 � 0.05; all are the same as those in (a1)–(a8) except
χ0 � 0.3 in (b1)–(b8) and χ0 � 1 in (c1)–(c8).
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F⃗ grad�x; y; z� �
2πn2r30

c

�
m2 − 1

m2 � 2

�
∇I�x; y; z�; (12)

where c is the light velocity, I�x; y; z� � cn2ε0
jE�x;y;z�j2

2 .
The scattering force is associated with the scattering of light

caused by the change of the electromagnetic momentum. It is
in the same direction as the propagation of the beam. The scat-
tering force can be expressed as [23]

F⃗ scat�x; y; z� �
n2
c
Cpr0

I�x; y; z�e⃗z ; (13)

where Cpr0
is the radiation pressure section of the particle.

Taking the isotropy of the particle into consideration, the
radiation pressure section of the particle is equal to the scatter-
ing force section of the scatterer:

Cpr0
� C scat �

8

3
π�ka�4r20

�
m2 − 1

m2 � 2

�
2

: (14)

As you can see in Eq. (13), the positive or negative scattering
force is determined by the sign of the refractive index n2 of the
surrounding medium. For scattering force in LHMs, parameter
n2 is negative, which means that the scattering force is also neg-
ative. Therefore, what can be explained is that a negative force
can be observed in LHMs.

From Eq. (12) and Eq. (13), on the one hand, we can see
that the gradient force of particles with high relative refractive
index aims at the place with the maximum value of the intensity
gradient, pulling the particles toward the maximum points. On
the other hand, the scattering force aims at the direction of the
beam’s propagation, driving the particles to move along the op-
tical axis when passing through the RHMs slabs in region 1 and
region 3; diametrically, it aims against the direction of the
beam’s propagation, driving the particles to move against the
optical axis when propagating through the LHMs slab in region
2. When the gradient force is stronger than the scattering force,
the particle will be trapped at the maximum points of the
intensity gradient in the interface z � 12ZR . Owing to the
RHCPAiGBs accompanied by a series of minor lobes, the par-
ticles will not only be trapped in the main lobe, but also in the
minor lobes, so then more traps will be generated along the
propagation of the RHCPAiGBs.

Figure 8 indicates the section distributions of the transverse
gradient force of the RHCPAiGBs for the particles with

n1 � 1.50, r0 � 60 nm. It can be seen that those particles
struck by the beam are driven by the gradient force.
According to Eq. (12) and Fig. 8, the forces aim toward the
maximum value of the intensity gradient, namely, the centers
of the main lobe and minor lobes. Around the centers of the
main lobe and minor lobes, the gradient forces are stronger;
nevertheless, they are vanishing at the centers. Figure 9 shows
the section distributions of the scattering force of the
RHCPAiGBs along the z direction for the particles with
n1 � 1.50, r0 � 60 nm. According to Eq. (13) and Fig. 9,
it is not hard to see that those particles struck by the beam
in RHMs will be driven by the scattering force aiming in
the direction of the beam’s propagation. Meanwhile, the closer
to the centers of the lobes the particles are, the stronger the
scattering forces are. However, those particles struck by the
beam in LHMs will be driven against the scattering forces
aiming in the direction of the beam’s propagation; similarly,
the forces are stronger at the centers of the lobes.

4. CONCLUSIONS

In conclusion, we investigate the properties of the
RHCPAiGBs through RHMs and LHMs. It is shown that
the RHCPAiGB goes along a parabolic trajectory when it passes
through the LHMs as well as through the RHMs. After it prop-
agates through the slab of LHMs in region 2, the intensity and
the phase distribution of the RHCPAiGB will return to their
original states in the slab of RHMs in region 3. We also inves-
tigate the influence of the parameter χ0 on the propagation of
the RHCPAiGB. The physics underlying this intriguing accel-
erating effect of the RHCPAiGBs is the combined contribu-
tions of the transverse spin and the transverse orbital
currents. In addition, χ0 with a larger value results in the peak
intensity of the beam changing more rapidly so that the energy
of the beam will be focused seemingly. Last, the radiation forces
of the RHCPAiGBs have been discussed. When the gradient
force is stronger than the scattering force, the particle will be
trapped at the maximum points of the intensity gradient in the
interface z � 12ZR . Owing to the RHCPAiGBs accompanied
by a series of minor lobes, more traps will be generated along
the propagation of the RHCPAiGBs.
†These authors contributed equally to this work.

Fig. 8. Section distributions of the transverse gradient force of
the RHCPAiGBs for the particles with n1 � 1.50, r0 � 60 nm:
(a)–(h) the distribution at the distances marked by the dashed lines
in Fig. 3(d), respectively.

Fig. 9. Section distributions of the scattering force of the AiG
beam along the z direction for the particles. All parameters are the
same as those in Fig. 8.
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