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Propagation of Airy Gaussian vortex beams in uniaxial crystals∗
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The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis
has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The
propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of
the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum
intensity value during the propagation, and its appearing distance have been investigated.
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1. Introduction
In 1979, Berry and Balazs introduced the nonspreading

Airy wave packets by solving Schrödinger equation.[1] The
packets bring many researchers’ interests due to their unique
properties of nonspreading and constant acceleration in free
space. In 2007, on the basis of previous studies, Siviloglou
et al. obtained finite energy Airy beams by adding a decay
factor. They investigated and observed those beams in both
one- and two-dimensional configurations theoretically[2] and
experimentally,[3] finding that the finite energy Airy beams
also preserve quasi-diffraction-free and free acceleration prop-
erties. Next year, self-healing properties were investigated
by John Broky et al.[4] Then Airy beams were widely inves-
tigated in many kinds of materials such as free space,[5–7]

right-handed material to left-handed material,[8] bulk non-
linear media,[9–15] and a quadratic-index medium.[16] Nowa-
days, researches on Airy beams are involved in various fields
of military,[17–19] micro–nano technology,[20–23] atmospheric
sciences,[24] and so on.

Furthermore, it is an interesting subject to describe the
light propagation in the anisotropic media in both theoretical
and applied optics.[25,26] In reality, crystals play an important
part in the design of optical devices, e.g., polarizers and com-
pensators, because of their ability to affect the polarization
state of light.[27] Through uniaxial crystals, the propagation
of Airy beams,[28] Airy vortex beams,[29] and Airy Gaussian
beams[30] has been investigated.

Airy Gaussian vortex beams (AiGVBs) are obtained from
Airy beams multiplied Gaussian factor and vortex factor. It
is intriguing for AiGVBs that these beams not only have the
unique features of Airy Gaussian beams:[31,32] free acceler-
ation and self-healing, but also have the properties of vor-
tex beams:[33,34] intensity singularities and phase singulari-
ties. However, to the best of our knowledge, AiGVBs only
have been investigated in the media of right-hand materials
and left-hand materials.[34] Therefore, in the rest of the paper,
the propagation of AiGVBs in uniaxial crystals is to be inves-
tigated.

2. Propagation of Airy Gaussian vortex beams
in uniaxial crystals

In the spatial coordinate system, the z axis is taken to be
the propagation axis and the x axis is taken to be the optical
axis of the uniaxial crystal. The observation plane is taken to
be z and the input plane is z = 0. The relative dielectric tensor
ε of the uniaxial crystal is set as

𝜖=

 n2
e 0 0

0 n2
o 0

0 0 n2
o

 , (1)

where ne and no are the extraordinary and the ordinary refrac-
tive indices of the uniaxial crystal. The electric field distribu-
tion of the AiGVBs in the input plane z = 0 reads
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where Ex(x0,y0,0) and Ey(x0,y0,0), respectively, stand for the
initial electric field distribution in the x and y directions; A0

is the amplitude of the beams; Ai(·) is the Airy function;
χ0 is a distribution factor which can be non-zero real num-
ber (for simplicity, we only value it positive real number in
this paper); ax and ay, respectively, stand for decay factors in
the x and y directions which make the energy of the beams
be finite; w stands for the beam width of Gaussian beams;

(
(x0− x1)/χ0w+ i(y0− y1)/χ0w

)m is the positive vortex fac-
tor, while ((x0− x2)/χ0w− i(y0− y2)/χ0w)n is the negative
one, m and n are orders of their factor, respectively, x1, y1 and
x2, y2, respectively, stand for positions from the center of the
positive and negative vortex factors. However, for simplicity,
in this paper, we only discuss a situation with m = 1, n = 0,
and x1 = y1 = x2 = y2 = 0. Hence, the initial electric field
distribution of AiGVBs in this paper reads
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Under the paraxial approximation, the propagation formulas of the AiGVBs orthogonal to the axis can be obtained by[27,28,35]
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where k = 2π/λ is the wave number and λ is the optical wavelength. Substituting Eqs. (1) and (3) into Eqs. (4) and (5), and
using Airy integral formulas∫
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the analytical complex field of AiGVBs after propagating a
distance z in uniaxial crystals orthogonal to the optical axis
can be obtained as

Ex (x,y,z) = G0(G1G2+G3G4), (8)

Ey (x,y,z) = 0, (9)

where
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As for expressions (11)–(14), where

a = χ0w, (15a)
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3. Numerical calculations and analyses
Here we investigate how the changes of χ0 and ne/no af-

fect the propagation of AiGVBs in uniaxial crystals. The beam
parameters are chosen as follows: λ = 530 nm, ax = ay = 0.1,
the normalized coefficient X0 = λw = 10−4 m, the Rayleigh
distance Z0 = kX2

0 /2≈ 6 cm, and no = 2.616. Hereafter, these
parameters will not change.

First, we will consider the case of different χ0. We set
no = 3.1392 and intensity I(x,y,z) = |Ex(x,y,z)|2. At each ob-
servation plane, we normalize the values of intensity with

I(x,y,z)− I(x,y,z)min
I(x,y,z)max− I(x,y,z)min

, (16)

where I(x,y,z) means the value of the intensity at the obser-
vation plane z, and I(x,y,z)max or I(x,y,z)min means the maxi-
mum or the minimum value of the intensity at that plane.
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Fig. 1. (color online) Normalized intensity distribution of AiGVBs propagating in the uniaxial crystals at several observation planes. (a1)–(a5) χ0 = 0.01,
(b1)–(b5) χ0 = 0.1, and (c1)–(c5) χ0 = 0.3.

From Figs. 1 and 2, we can find that if χ0 takes smaller
number, the distributions of the intensity and the phase ap-
proach the distributions of Airy vortex beams, like Figs. 1(a1)
and 2(a1), while if χ0 takes larger number, the distributions
approach those of Gaussian vortex beams, like Figs. 1(a3) and
2(a3). The smaller χ0 is, the more largely the Airy factor af-
fects, and on the contrary, the more largely the Gaussian fac-
tor affects. The Gaussian factor can strengthen main lobes
and weaken side lobes, but the vortex factor can weaken main
lobes, like Figs. 1(a1), 1(b1), and 1(c1). In the propagation

process, figures 1(a2), 1(b2), and 1(c2) show that AiGVBs
heal firstly and each main lobe is rebuilt when z = 8Z0, z =
5Z0, and z = 3Z0, demonstrating that the healing distance de-
creases as χ0 increases. After healing, main lobes further
strengthen and the energy of side lobes converges into main
lobes until most energy is concentrated on the main lobes, like
Figs. 1(a3), 1(b3), and 1(c3). Then the energy flows along the
x and y directions, but the energy flows along the x direction
more largely due to ne > no. In further propagation, the energy
mostly distributes along the x direction.
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Fig. 2. (color online) Phase distribution of AiGVBs propagating in the uniaxial crystals at several observation planes. (a1)–(a5) χ0 = 0.01,
(b1)–(b5) χ0 = 0.1, (c1)–(c5) χ0 = 0.3.
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Fig. 3. (color online) Maximum intensity of each observation plane (differ-
ent z) of the AiGVBs with different χ0.

Then, we investigate the maximum intensity of each ob-

servation plane (different z) of the AiGVBs with different χ0

(see Fig. 3). It shows that if χ0 is smaller, the beams approach
Airy vortex beams, so the maximum intensity firstly increases
as the distance increases, corresponding to the healing pro-
cess. If χ0 is larger, the effect of the Gaussian factor enhances,
causing the beams to diffract rapidly, so the maximum inten-
sity decreases rapidly.

Next, we will investigate how the change of ne/no affects
the propagation of AiGVBs in uniaxial crystals. Here, we set
χ0 = 0.01 and no = 2.616. The normalized intensity and the
phase distributions with different values of ne/no are shown in
Figs. 4 and 5.
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Fig. 4. (color online) Normalized intensity distribution of AiGVBs propagating in the uniaxial crystals at several observation planes.
(a1)–(a5) ne/no = 1, (b1)–(b5) ne/no = 1.2, (c1)–(c5) ne/no = 1.5, and (d1)–(d4) ne/no = 2.
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The two figures show that the value of ne/no has a great
impact on the distributions of the intensity and the phase. Fig-
ures 4(a1)–4(a4) show that if ne = no, the intensity distribu-
tion along the x direction equals that in the y direction. As

the value of ne/no decreases, the energy more obviously dis-
tributes along the x direction. As for the phase, figure 5 shows
that as the value of ne/no decreases, the phase looks more like
an ellipse spiral shape.
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Fig. 5. (color online) Phase distribution of AiGVBs propagating in the uniaxial crystals at several observation planes. (a1)–(a5) ne/no = 1,
(b1)–(b5) ne/no = 1.2, (c1)–(c5) ne/no = 1.5, and (d1)–(d4) ne/no = 2.
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Fig. 7. Maximum intensity value during propagation with different values
of ne/no.

We continue to investigate the maximum intensity values
of each observation plane (different z) of the AiGVBs with dif-

ferent values of ne/no. Some results are shown in Fig. 6. We
find that the maximum intensity value during the propagation
and its appearing distance z are not monotonic with the ratio
of ne/no. As for what are the maximum intensity value dur-
ing the propagation and its appearing distance z, for example,
in the propagation of the beam with ne = 2.0no in Fig. 6, the
values on horizontal and vertical coordinates that the point A
corresponds to are the maximum value and its appearing dis-
tance z. We further investigate, and the results are showed in
Figs. 7 and 8.

Figure 7 shows that as ne/no increases, the maximum in-
tensity value during the propagation firstly decreases then in-
creases. The minimum intensity appears when ne = 1.23no.
As discussed above, Airy factor makes the energy of the
AiGVBs concentrate to the center while the increase of ne/no

makes the energy more distribute along with the x direction.
Although these two effects both concentrate the energy, to
some extent, the direction of concentrating the energy of the
two effects is different. The increase of ne/no firstly will
weaken the effect of Airy factor of concentrating the energy
to the center, so the maximum intensity value during the prop-
agation decreases as ne/no increases firstly. Then, as ne/no

increases, the effect of ne/no becomes larger than the effect
of Airy factor, so after ne/no = 1.23, the maximum intensity
value increases with the increase of ne/no. The correlation
between the appearing distance z of the maximum value and
ne/no is also not monotonic, too. The general trend is that the
appearing distance z of the maximum value firstly decreases,
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next increases, and then decreases as ne/no increases.
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Fig. 8. Appearing distance z of the maximum intensity value during propa-
gation with different values of ne/no.

4. Conclusions
The propagation dynamics of the Airy Gaussian vortex

beams in uniaxial crystals orthogonal to the optical axis has
been investigated analytically and numerically. The propaga-
tion expression of the beams has been obtained. The propa-
gation features of the beams with changes of the distribution
factor χ0 and the ratio of the extraordinary refractive index ne

to the ordinary refractive index no are showed. When χ0 is
valued smaller, the distributions of the intensity and the phase
approach to the distributions of the Airy vortex beams, and on
the contrary, the distributions approach to those of the Gaus-
sian vortex beams. The ratio ne/no affects the distributions of
the intensity and the phase, as well as the maximum intensity
value of each observation plane, the maximum intensity value
during the propagation and its appearing distance. However,
the correlations between the ratio and the maximum intensity
value during the propagation, between the ratio and the ap-
pearing distance are not monotonic.
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